Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Sci Rep ; 14(1): 8708, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622173

ABSTRACT

Recent work has revealed an important role for rare, incompletely penetrant inherited coding variants in neurodevelopmental disorders (NDDs). Additionally, we have previously shown that common variants contribute to risk for rare NDDs. Here, we investigate whether common variants exert their effects by modifying gene expression, using multi-cis-expression quantitative trait loci (cis-eQTL) prediction models. We first performed a transcriptome-wide association study for NDDs using 6987 probands from the Deciphering Developmental Disorders (DDD) study and 9720 controls, and found one gene, RAB2A, that passed multiple testing correction (p = 6.7 × 10-7). We then investigated whether cis-eQTLs modify the penetrance of putatively damaging, rare coding variants inherited by NDD probands from their unaffected parents in a set of 1700 trios. We found no evidence that unaffected parents transmitting putatively damaging coding variants had higher genetically-predicted expression of the variant-harboring gene than their child. In probands carrying putatively damaging variants in constrained genes, the genetically-predicted expression of these genes in blood was lower than in controls (p = 2.7 × 10-3). However, results for proband-control comparisons were inconsistent across different sets of genes, variant filters and tissues. We find limited evidence that common cis-eQTLs modify penetrance of rare coding variants in a large cohort of NDD probands.


Subject(s)
Neurodevelopmental Disorders , Polymorphism, Single Nucleotide , Child , Humans , Penetrance , Quantitative Trait Loci/genetics , Neurodevelopmental Disorders/genetics , Transcriptome
2.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38645134

ABSTRACT

Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.

3.
Nat Genet ; 56(1): 152-161, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057443

ABSTRACT

Recessive diseases arise when both copies of a gene are impacted by a damaging genetic variant. When a patient carries two potentially causal variants in a gene, accurate diagnosis requires determining that these variants occur on different copies of the chromosome (that is, are in trans) rather than on the same copy (that is, in cis). However, current approaches for determining phase, beyond parental testing, are limited in clinical settings. Here we developed a strategy for inferring phase for rare variant pairs within genes, leveraging genotypes observed in the Genome Aggregation Database (v2, n = 125,748 exomes). Our approach estimates phase with 96% accuracy, both in trio data and in patients with Mendelian conditions and presumed causal compound heterozygous variants. We provide a public resource of phasing estimates for coding variants and counts per gene of rare variants in trans that can aid interpretation of rare co-occurring variants in the context of recessive disease.


Subject(s)
Exome , High-Throughput Nucleotide Sequencing , Humans , Exome/genetics , Exome Sequencing , Genotype
4.
N Engl J Med ; 388(17): 1559-1571, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37043637

ABSTRACT

BACKGROUND: Pediatric disorders include a range of highly penetrant, genetically heterogeneous conditions amenable to genomewide diagnostic approaches. Finding a molecular diagnosis is challenging but can have profound lifelong benefits. METHODS: We conducted a large-scale sequencing study involving more than 13,500 families with probands with severe, probably monogenic, difficult-to-diagnose developmental disorders from 24 regional genetics services in the United Kingdom and Ireland. Standardized phenotypic data were collected, and exome sequencing and microarray analyses were performed to investigate novel genetic causes. We developed an iterative variant analysis pipeline and reported candidate variants to clinical teams for validation and diagnostic interpretation to inform communication with families. Multiple regression analyses were performed to evaluate factors affecting the probability of diagnosis. RESULTS: A total of 13,449 probands were included in the analyses. On average, we reported 1.0 candidate variant per parent-offspring trio and 2.5 variants per singleton proband. Using clinical and computational approaches to variant classification, we made a diagnosis in approximately 41% of probands (5502 of 13,449). Of 3599 probands in trios who received a diagnosis by clinical assertion, approximately 76% had a pathogenic de novo variant. Another 22% of probands (2997 of 13,449) had variants of uncertain significance in genes that were strongly linked to monogenic developmental disorders. Recruitment in a parent-offspring trio had the largest effect on the probability of diagnosis (odds ratio, 4.70; 95% confidence interval [CI], 4.16 to 5.31). Probands were less likely to receive a diagnosis if they were born extremely prematurely (i.e., 22 to 27 weeks' gestation; odds ratio, 0.39; 95% CI, 0.22 to 0.68), had in utero exposure to antiepileptic medications (odds ratio, 0.44; 95% CI, 0.29 to 0.67), had mothers with diabetes (odds ratio, 0.52; 95% CI, 0.41 to 0.67), or were of African ancestry (odds ratio, 0.51; 95% CI, 0.31 to 0.78). CONCLUSIONS: Among probands with severe, probably monogenic, difficult-to-diagnose developmental disorders, multimodal analysis of genomewide data had good diagnostic power, even after previous attempts at diagnosis. (Funded by the Health Innovation Challenge Fund and Wellcome Sanger Institute.).


Subject(s)
Genomics , Rare Diseases , Child , Humans , Exome , Ireland/epidemiology , United Kingdom/epidemiology , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/genetics , Oligonucleotide Array Sequence Analysis , Genetic Association Studies , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Congenital Abnormalities/diagnosis , Congenital Abnormalities/genetics , Growth Disorders/diagnosis , Growth Disorders/genetics , Facies , Child Behavior Disorders/diagnosis , Child Behavior Disorders/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics
5.
bioRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-36993580

ABSTRACT

Recessive diseases arise when both the maternal and the paternal copies of a gene are impacted by a damaging genetic variant in the affected individual. When a patient carries two different potentially causal variants in a gene for a given disorder, accurate diagnosis requires determining that these two variants occur on different copies of the chromosome (i.e., are in trans) rather than on the same copy (i.e. in cis). However, current approaches for determining phase, beyond parental testing, are limited in clinical settings. We developed a strategy for inferring phase for rare variant pairs within genes, leveraging genotypes observed in exome sequencing data from the Genome Aggregation Database (gnomAD v2, n=125,748). When applied to trio data where phase can be determined by transmission, our approach estimates phase with 95.7% accuracy and remains accurate even for very rare variants (allele frequency < 1×10-4). We also correctly phase 95.9% of variant pairs in a set of 293 patients with Mendelian conditions carrying presumed causal compound heterozygous variants. We provide a public resource of phasing estimates from gnomAD, including phasing estimates for coding variants across the genome and counts per gene of rare variants in trans, that can aid interpretation of rare co-occurring variants in the context of recessive disease.

6.
Nat Med ; 28(9): 1893-1901, 2022 09.
Article in English | MEDLINE | ID: mdl-36097220

ABSTRACT

The impact of genetic variation on overall disease burden has not been comprehensively evaluated. We introduce an approach to estimate the effect of genetic risk factors on disability-adjusted life years (DALYs; 'lost healthy life years'). We use genetic information from 735,748 individuals and consider 80 diseases. Rare variants had the highest effect on DALYs at the individual level. Among common variants, rs3798220 (LPA) had the strongest individual-level effect, with 1.18 DALYs from carrying 1 versus 0 copies. Being in the top 10% versus the bottom 90% of a polygenic score for multisite chronic pain had an effect of 3.63 DALYs. Some common variants had a population-level effect comparable to modifiable risk factors such as high sodium intake and low physical activity. Attributable DALYs vary between males and females for some genetic exposures. Genetic risk factors can explain a sizable number of healthy life years lost both at the individual and population level.


Subject(s)
Global Burden of Disease , Sodium, Dietary , Female , Global Health , Health Status , Humans , Male , Quality-Adjusted Life Years , Risk Factors
7.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35917817

ABSTRACT

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Subject(s)
DNA Copy Number Variations , Genome, Human , DNA Copy Number Variations/genetics , Gene Dosage , Haploinsufficiency/genetics , Humans
8.
Nature ; 603(7903): 858-863, 2022 03.
Article in English | MEDLINE | ID: mdl-35322230

ABSTRACT

Genome-wide sequencing of human populations has revealed substantial variation among genes in the intensity of purifying selection acting on damaging genetic variants1. Although genes under the strongest selective constraint are highly enriched for associations with Mendelian disorders, most of these genes are not associated with disease and therefore the nature of the selection acting on them is not known2. Here we show that genetic variants that damage these genes are associated with markedly reduced reproductive success, primarily owing to increased childlessness, with a stronger effect in males than in females. We present evidence that increased childlessness is probably mediated by genetically associated cognitive and behavioural traits, which may mean that male carriers are less likely to find reproductive partners. This reduction in reproductive success may account for 20% of purifying selection against heterozygous variants that ablate protein-coding genes. Although this genetic association may only account for a very minor fraction of the overall likelihood of being childless (less than 1%), especially when compared to more influential sociodemographic factors, it may influence how genes evolve over time.


Subject(s)
Reproduction , Selection, Genetic , Chromosome Mapping , Female , Heterozygote , Humans , Male , Phenotype , Reproduction/genetics
10.
Am J Hum Genet ; 108(6): 1083-1094, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34022131

ABSTRACT

Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5' untranslated regions (5' UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5' UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5' UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene.


Subject(s)
5' Untranslated Regions , Developmental Disabilities/etiology , Genetic Predisposition to Disease , Loss of Function Mutation , Child , Cohort Studies , DNA Copy Number Variations , Developmental Disabilities/pathology , Humans , MEF2 Transcription Factors/genetics , Exome Sequencing
12.
Nat Commun ; 12(1): 627, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504798

ABSTRACT

Over 130 X-linked genes have been robustly associated with developmental disorders, and X-linked causes have been hypothesised to underlie the higher developmental disorder rates in males. Here, we evaluate the burden of X-linked coding variation in 11,044 developmental disorder patients, and find a similar rate of X-linked causes in males and females (6.0% and 6.9%, respectively), indicating that such variants do not account for the 1.4-fold male bias. We develop an improved strategy to detect X-linked developmental disorders and identify 23 significant genes, all of which were previously known, consistent with our inference that the vast majority of the X-linked burden is in known developmental disorder-associated genes. Importantly, we estimate that, in male probands, only 13% of inherited rare missense variants in known developmental disorder-associated genes are likely to be pathogenic. Our results demonstrate that statistical analysis of large datasets can refine our understanding of modes of inheritance for individual X-linked disorders.


Subject(s)
Developmental Disabilities/genetics , Genes, X-Linked , Genetic Diseases, X-Linked/genetics , Genetic Variation , Chromosomes, Human, X/genetics , Female , Genes, Recessive , Humans , Inheritance Patterns/genetics , Male , Multifactorial Inheritance/genetics , Mutation/genetics , Phenotype , Sex Characteristics
13.
Nature ; 586(7831): 757-762, 2020 10.
Article in English | MEDLINE | ID: mdl-33057194

ABSTRACT

De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.


Subject(s)
DNA Mutational Analysis , Data Analysis , Databases, Genetic , Datasets as Topic , Delivery of Health Care/statistics & numerical data , Developmental Disabilities/genetics , Genetic Diseases, Inborn/genetics , Cohort Studies , DNA Copy Number Variations/genetics , Developmental Disabilities/diagnosis , Europe , Female , Genetic Diseases, Inborn/diagnosis , Germ-Line Mutation/genetics , Haploinsufficiency/genetics , Humans , Male , Mutation, Missense/genetics , Penetrance , Perinatal Death , Sample Size
14.
Nature ; 581(7809): 434-443, 2020 05.
Article in English | MEDLINE | ID: mdl-32461654

ABSTRACT

Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.


Subject(s)
Exome/genetics , Genes, Essential/genetics , Genetic Variation/genetics , Genome, Human/genetics , Adult , Brain/metabolism , Cardiovascular Diseases/genetics , Cohort Studies , Databases, Genetic , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Loss of Function Mutation/genetics , Male , Mutation Rate , Proprotein Convertase 9/genetics , RNA, Messenger/genetics , Reproducibility of Results , Exome Sequencing , Whole Genome Sequencing
15.
Genome Med ; 12(1): 28, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32183904

ABSTRACT

BACKGROUND: Classifying pathogenicity of missense variants represents a major challenge in clinical practice during the diagnoses of rare and genetic heterogeneous neurodevelopmental disorders (NDDs). While orthologous gene conservation is commonly employed in variant annotation, approximately 80% of known disease-associated genes belong to gene families. The use of gene family information for disease gene discovery and variant interpretation has not yet been investigated on a genome-wide scale. We empirically evaluate whether paralog-conserved or non-conserved sites in human gene families are important in NDDs. METHODS: Gene family information was collected from Ensembl. Paralog-conserved sites were defined based on paralog sequence alignments; 10,068 NDD patients and 2078 controls were statistically evaluated for de novo variant burden in gene families. RESULTS: We demonstrate that disease-associated missense variants are enriched at paralog-conserved sites across all disease groups and inheritance models tested. We developed a gene family de novo enrichment framework that identified 43 exome-wide enriched gene families including 98 de novo variant carrying genes in NDD patients of which 28 represent novel candidate genes for NDD which are brain expressed and under evolutionary constraint. CONCLUSION: This study represents the first method to incorporate gene family information into a statistical framework to interpret variant data for NDDs and to discover new NDD-associated genes.


Subject(s)
Developmental Disabilities/genetics , Genome-Wide Association Study/methods , Multigene Family , Mutation, Missense , Genetic Loci , Phylogeny , Sequence Homology
16.
Nat Neurosci ; 23(2): 185-193, 2020 02.
Article in English | MEDLINE | ID: mdl-31932770

ABSTRACT

Protein-coding de novo mutations (DNMs) are significant risk factors in many neurodevelopmental disorders, whereas schizophrenia (SCZ) risk associated with DNMs has thus far been shown to be modest. We analyzed DNMs from 1,695 SCZ-affected trios and 1,077 published SCZ-affected trios to better understand the contribution to SCZ risk. Among 2,772 SCZ probands, exome-wide DNM burden remained modest. Gene set analyses revealed that SCZ DNMs were significantly concentrated in genes that were highly expressed in the brain, that were under strong evolutionary constraint and/or overlapped with genes identified in other neurodevelopmental disorders. No single gene surpassed exome-wide significance; however, 16 genes were recurrently hit by protein-truncating DNMs, corresponding to a 3.15-fold higher rate than the mutation model expectation (permuted 95% confidence interval: 1-10 genes; permuted P = 3 × 10-5). Overall, DNMs explain a small fraction of SCZ risk, and larger samples are needed to identify individual risk genes, as coding variation across many genes confers risk for SCZ in the population.


Subject(s)
Genetic Predisposition to Disease/genetics , Schizophrenia/genetics , Adult , Child , Family , Female , Humans , Male , Mutation , Parents , Exome Sequencing
17.
Nat Commun ; 10(1): 4630, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604926

ABSTRACT

Mobile genetic Elements (MEs) are segments of DNA which can copy themselves and other transcribed sequences through the process of retrotransposition (RT). In humans several disorders have been attributed to RT, but the role of RT in severe developmental disorders (DD) has not yet been explored. Here we identify RT-derived events in 9738 exome sequenced trios with DD-affected probands. We ascertain 9 de novo MEs, 4 of which are likely causative of the patient's symptoms (0.04%), as well as 2 de novo gene retroduplications. Beyond identifying likely diagnostic RT events, we estimate genome-wide germline ME mutation rate and selective constraint and demonstrate that coding RT events have signatures of purifying selection equivalent to those of truncating mutations. Overall, our analysis represents a comprehensive interrogation of the impact of retrotransposition on protein coding genes and a framework for future evolutionary and disease studies.


Subject(s)
Developmental Disabilities/genetics , Genetic Variation , Retroelements/physiology , Humans , Mutation Rate , Retroelements/genetics
19.
Genome Res ; 28(7): 968-974, 2018 07.
Article in English | MEDLINE | ID: mdl-29858273

ABSTRACT

Variation in RNA splicing (i.e., alternative splicing) plays an important role in many diseases. Variants near 5' and 3' splice sites often affect splicing, but the effects of these variants on splicing and disease have not been fully characterized beyond the two "essential" splice nucleotides flanking each exon. Here we provide quantitative measurements of tolerance to mutational disruptions by position and reference allele-alternative allele combinations. We show that certain reference alleles are particularly sensitive to mutations, regardless of the alternative alleles into which they are mutated. Using public RNA-seq data, we demonstrate that individuals carrying such variants have significantly lower levels of the correctly spliced transcript, compared to individuals without them, and confirm that these specific substitutions are highly enriched for known Mendelian mutations. Our results propose a more refined definition of the "splice region" and offer a new way to prioritize and provide functional interpretation of variants identified in diagnostic sequencing and association studies.


Subject(s)
Alternative Splicing/genetics , Mutation/genetics , Nucleotides/genetics , RNA Splice Sites/genetics , RNA Splicing/genetics , Alleles , Exons/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...